Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples

Identifieur interne : 000804 ( Main/Repository ); précédent : 000803; suivant : 000805

Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples

Auteurs : RBID : Pascal:13-0246258

Descripteurs français

English descriptors

Abstract

The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0246258

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples</title>
<author>
<name sortKey="Anttu, Nicklas" uniqKey="Anttu N">Nicklas Anttu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heurlin, Magnus" uniqKey="Heurlin M">Magnus Heurlin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borgstrom, Magnus T" uniqKey="Borgstrom M">Magnus T. Borgström</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pistol, Mats Erik" uniqKey="Pistol M">Mats-Erik Pistol</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, H Q" uniqKey="Xu H">H. Q. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samuelson, Lars" uniqKey="Samuelson L">Lars Samuelson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>22100 Lund</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0246258</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0246258 INIST</idno>
<idno type="RBID">Pascal:13-0246258</idno>
<idno type="wicri:Area/Main/Corpus">000A18</idno>
<idno type="wicri:Area/Main/Repository">000804</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Chemical properties</term>
<term>Far field</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium phosphide</term>
<term>Industrial application</term>
<term>Modelling</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Optical method</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Scanning electron microscopy</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode optique</term>
<term>Champ lointain</term>
<term>Nanostructure</term>
<term>Propriété chimique</term>
<term>Microscopie électronique balayage</term>
<term>Facteur réflexion</term>
<term>Spectre réflexion</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Réseau(arrangement)</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Phosphure d'indium</term>
<term>Application industrielle</term>
<term>InP</term>
<term>6865</term>
<term>7840R</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ANTTU (Nicklas)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HEURLIN (Magnus)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BORGSTRÖM (Magnus T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PISTOL (Mats-Erik)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>XU (H. Q.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SAMUELSON (Lars)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2662-2667</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000503877950550</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0246258</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H40R</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optical method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método óptico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Champ lointain</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Far field</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Campo lejano</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Propriété chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Chemical properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Application industrielle</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Industrial application</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Aplicación industrial</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7840R</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>231</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000804 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000804 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0246258
   |texte=   Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024